Search results for "optics [X-ray]"
showing 10 items of 981 documents
Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum
2011
International audience; We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600–2000 cm−1 spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant …
Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy
2008
International audience; With an infrared transparency extended to 10 µm, low multiphonon relaxation rates and suitable rare earth solubility, sulphide glasses in the Ge-Ga-Sb-S system allow radiative emission from rare earth ions in the mid-IR range. The Er3+ ion, widely studied in glass fibres for optical amplification at 1.5 µm, presents an interesting transition for mid-IR applications around 4.5 µm (4I9/2→ 4I11/2). Thus, the aim of this work is to evaluate the Er3+-doped Ge20Ga5Sb10S65 glass as a potential fibre laser source operating in the 3-5 µm mid-IR spectral region. For that purpose, absorption and emission spectra were recorded from visible to mid-IR and the radiative lifetimes o…
Fabrication of long period fiber gratings of subnanometric bandwidth.
2017
This paper reports on the fabrication of long period fiber gratings having subnanometric bandwidth in the 1500 nm spectral region. Large gratings have been photo-inscribed in a high NA fiber, the grating pitch and the order of the HE cladding mode are optimized to produce gratings with a large number of periods and preventing the coupling to TE, TM or EH modes. Resonances with a FWHM of 0.83 nm and 0.68 nm have been achieved for gratings 15 and 20 cm long respectively, the free spectral range between transmission notches is 125 nm. The polarization effects and the sensitivity of the gratings to temperature and to strain variations are presented as well. © 2015 Optical Society of America Thi…
Te-As-Se glass microstructured optical fiber for the middle infrared
2009
International audience; We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 μm, in good agreement with experimental near-field captures at 9.3 μm. The second fiber is not monomode between 3.39 and 9.3 μm, but the fundamental losses are 9 dB/m at 3:39 μm and 6 dB/m at 9.3 μm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.
Subwavelength imaging of field confinement in a waveguide-integrated photonic crystal cavity
2005
A photonic crystal microcavity is designed to obtain an original field distribution inside the cavity and the structure is etched inside a silicon-on-insulator waveguide. Spectral location of the photonic band gap and cavity resonance are identified by using transmittance measurements and by analyzing the light collected by a scanning near-field optical microscope probe exactly positioned on the center of the cavity. The results obtained with the two techniques are in very good agreement. Then the near-field distribution above the device is mapped and light confinement inside the cavity is evidenced. Moreover, this confined light presents some remarkable patterns which clearly correspond to…
Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy
2016
International audience; Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nano-particles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle " supermolecules " , that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diame…
CARS methane spectra: Experiments and simulations for temperature diagnostic purposes
2007
International audience; CARS laboratory experiments were done in the 2905-2925 cm(-1) range, in the vicinity of the v, band of the methane molecule, for pressures ranging from I to 50 bar, and temperatures up to 1100 K. These experiments were carried out in order to retrieve the pressure evolution of the CH4 spectrum, as well as to confirm its temperature dependance. After a brief recall on the theory used to compute pressure broadening coefficients and relaxation rates, we consider the v(3) and v(4) infrared bands of methane for benchmark calculations purposes. Next, we present recent experimental CARS spectra and calculated ones. Lastly, we discuss flame experiments as well as comparisons…
Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties
2020
This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.
Influence of the Number of Nanoparticles on the Enhancement Properties of Surface-Enhanced Raman Scattering Active Area: Sensitivity versus Repeatabi…
2011
In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles. We found that the experimental parameters are critical, in particular the size of the SERS-active area must be comparable to the effective area of excitation to obtained reproducible SERS measurements. The sensitivity has also been studied by deducing the number of NPs that generat…
Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles
2013
International audience; We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core–shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal–RE energy transfer mechanism is…