Search results for "optics [X-ray]"

showing 10 items of 981 documents

Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum

2011

International audience; We perform multiplex coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy with a picosecond pulsed laser and a broadband supercontinuum (SC) generated in photonic crystal fiber. CARS signal stability is achieved using an active fiber coupler that avoids thermal and mechanical drifts. We obtain multiplex CARS spectra for test liquids in the 600–2000 cm−1 spectral range. In addition we investigate the polarization dependence of the CARS spectra when rotating the pump beam linear polarization state relative to the linearly polarized broad stokes SC. From these polarization measurements we deduce the Raman depolarization ratio, the resonant versus nonresonant …

Materials scienceBiomedical EngineeringPhysics::Optics02 engineering and technologySpectrum Analysis Raman01 natural sciencesPattern Recognition Automated010309 opticsBiomaterialssymbols.namesakeLaser linewidthOptics87.64.kp 87.63.ltFiber laser0103 physical sciencesDepolarization ratioFiber Optic TechnologyCoherent anti-Stokes Raman spectroscopy[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryLasersEquipment Design021001 nanoscience & nanotechnologyImage EnhancementAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumEquipment Failure AnalysissymbolsOptoelectronicsMicroscopy Polarization0210 nano-technologybusinessRaman spectroscopyRaman scatteringPhotonic-crystal fiber
researchProduct

Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy

2008

International audience; With an infrared transparency extended to 10 µm, low multiphonon relaxation rates and suitable rare earth solubility, sulphide glasses in the Ge-Ga-Sb-S system allow radiative emission from rare earth ions in the mid-IR range. The Er3+ ion, widely studied in glass fibres for optical amplification at 1.5 µm, presents an interesting transition for mid-IR applications around 4.5 µm (4I9/2→ 4I11/2). Thus, the aim of this work is to evaluate the Er3+-doped Ge20Ga5Sb10S65 glass as a potential fibre laser source operating in the 3-5 µm mid-IR spectral region. For that purpose, absorption and emission spectra were recorded from visible to mid-IR and the radiative lifetimes o…

Materials scienceChalcogenide glassesInfraredAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciences010309 opticsInorganic ChemistryErbiumOpticsOptical fibresFiber laser0103 physical sciencesRadiative transferEmission spectrumElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyAbsorption (electromagnetic radiation)SpectroscopyMid-infrared[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryOrganic ChemistryFar-infrared laser021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials42.70.Km; 42.55.Wd; 61.43.FschemistrySpectroscopic properties0210 nano-technologybusinessErbium
researchProduct

Fabrication of long period fiber gratings of subnanometric bandwidth.

2017

This paper reports on the fabrication of long period fiber gratings having subnanometric bandwidth in the 1500 nm spectral region. Large gratings have been photo-inscribed in a high NA fiber, the grating pitch and the order of the HE cladding mode are optimized to produce gratings with a large number of periods and preventing the coupling to TE, TM or EH modes. Resonances with a FWHM of 0.83 nm and 0.68 nm have been achieved for gratings 15 and 20 cm long respectively, the free spectral range between transmission notches is 125 nm. The polarization effects and the sensitivity of the gratings to temperature and to strain variations are presented as well. © 2015 Optical Society of America Thi…

Materials scienceFabrication02 engineering and technologyGratingFiber optics01 natural sciencesMultiplexing010309 optics020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiber Bragg gratingsbusiness.industryFiber optics sensorsResonanceCladding modePolarization (waves)Atomic and Molecular Physics and OpticsUNESCO::FÍSICA::Óptica ::Fibras ópticasFull width at half maximum:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fourier optics and signal processingbusinessRefractive indexFree spectral rangeOptics letters
researchProduct

Te-As-Se glass microstructured optical fiber for the middle infrared

2009

International audience; We present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.3 μm, in good agreement with experimental near-field captures at 9.3 μm. The second fiber is not monomode between 3.39 and 9.3 μm, but the fundamental losses are 9 dB/m at 3:39 μm and 6 dB/m at 9.3 μm. The experimental mode field diameters are compared to the theoretical ones with a good accordance.

Materials scienceFabricationOptical fibermoyen infrarougeChalcogenideMaterials Science (miscellaneous)méthode multipolaire02 engineering and technology01 natural sciencesIndustrial and Manufacturing Engineeringétiragelaw.inventionverre TAS010309 opticsverreschemistry.chemical_compoundOpticsperteslaw0103 physical sciencesFiberBusiness and International ManagementOptical filterComputingMilieux_MISCELLANEOUSfibres optiques microstructurées[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]méthodes des éléments finisMulti-mode optical fiberbusiness.industrymonomode160.2750;060.2390; 060.2270; 060.2280.[CHIM.MATE]Chemical Sciences/Material chemistryMicrostructured optical fiber021001 nanoscience & nanotechnologychemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologybusinessmultimodePhotonic-crystal fiberApplied Optics
researchProduct

Subwavelength imaging of field confinement in a waveguide-integrated photonic crystal cavity

2005

A photonic crystal microcavity is designed to obtain an original field distribution inside the cavity and the structure is etched inside a silicon-on-insulator waveguide. Spectral location of the photonic band gap and cavity resonance are identified by using transmittance measurements and by analyzing the light collected by a scanning near-field optical microscope probe exactly positioned on the center of the cavity. The results obtained with the two techniques are in very good agreement. Then the near-field distribution above the device is mapped and light confinement inside the cavity is evidenced. Moreover, this confined light presents some remarkable patterns which clearly correspond to…

Materials scienceField (physics)Physics::OpticsGeneral Physics and AstronomySilicon on insulator02 engineering and technology01 natural sciencesWaveguide (optics)law.inventionOpticsOptical microscopelawEtching0103 physical sciencesTransmittance010306 general physicsComputingMilieux_MISCELLANEOUSPhotonic crystal[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry021001 nanoscience & nanotechnologyOptoelectronicsNear-field scanning optical microscope0210 nano-technologybusiness
researchProduct

Mechanical Coupling in Gold Nanoparticles Supermolecules Revealed by Plasmon-Enhanced Ultralow Frequency Raman Spectroscopy

2016

International audience; Acoustic vibrations of assemblies of gold nanoparticles were investigated using ultralow frequency micro-Raman scattering and finite element simulations. When exciting the assemblies resonantly with the surface plasmon resonance of electromagnetically coupled nano-particles, Raman spectra present an ultralow frequency band whose frequency lies below the lowest Raman active Lamb mode of single nanoparticles that was observed. This feature was ascribed to a Raman vibration mode of gold nanoparticle " supermolecules " , that is, nanoparticles mechanically coupled by surrounding polymer molecules. Its measured frequency is inversely proportional to the nanoparticle diame…

Materials scienceFrequency bandLambAnalytical chemistryNanoparticlePhysics::OpticsBioengineering02 engineering and technologygold NPs dimermechanical properties010402 general chemistry01 natural sciencesMolecular physicsVibrationsymbols.namesakeGeneral Materials SciencePhysics::Atomic PhysicsSurface plasmon resonanceRamanPlasmonchemistry.chemical_classification[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ScatteringMechanical EngineeringBrillouinGeneral ChemistryPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryColloidal goldsymbols0210 nano-technologyRaman spectroscopy
researchProduct

CARS methane spectra: Experiments and simulations for temperature diagnostic purposes

2007

International audience; CARS laboratory experiments were done in the 2905-2925 cm(-1) range, in the vicinity of the v, band of the methane molecule, for pressures ranging from I to 50 bar, and temperatures up to 1100 K. These experiments were carried out in order to retrieve the pressure evolution of the CH4 spectrum, as well as to confirm its temperature dependance. After a brief recall on the theory used to compute pressure broadening coefficients and relaxation rates, we consider the v(3) and v(4) infrared bands of methane for benchmark calculations purposes. Next, we present recent experimental CARS spectra and calculated ones. Lastly, we discuss flame experiments as well as comparisons…

Materials scienceInfrared010402 general chemistryCombustion7. Clean energy01 natural sciencesTemperature measurementMethaneSpectral linechemistry.chemical_compoundsymbols.namesakeline-mixingNuclear magnetic resonancepressure broadening0103 physical sciences(CH4)-C-12CARSPhysical and Theoretical ChemistryRamanSpectroscopy[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]010304 chemical physicsmethaneRelaxation (NMR)Atomic and Molecular Physics and Optics0104 chemical sciencesComputational physicschemistry13. Climate actionsymbolsRaman spectroscopytemperature measurementBar (unit)combustion
researchProduct

Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties

2020

This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.

Materials scienceKerr effectGeneral Chemical EngineeringGeneral Physics and AstronomyTwo photon absorption effect02 engineering and technology010402 general chemistryPhotochemistryTriphenylamine7. Clean energy01 natural sciencesTwo-photon absorptionRhodanine-3-acetic acidAcetic acidchemistry.chemical_compoundCyanoacrylic acidDimethoxy-substituted triphenylamineKerr effect:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSGeneral Environmental Science[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Energy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnologyAcceptor3. Good health0104 chemical sciencesDye-sensitized solar cellchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Earth and Planetary SciencesDye-sensitized solar cell0210 nano-technologyGlass transition
researchProduct

Influence of the Number of Nanoparticles on the Enhancement Properties of Surface-Enhanced Raman Scattering Active Area: Sensitivity versus Repeatabi…

2011

In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles. We found that the experimental parameters are critical, in particular the size of the SERS-active area must be comparable to the effective area of excitation to obtained reproducible SERS measurements. The sensitivity has also been studied by deducing the number of NPs that generat…

Materials scienceLightMacromolecular SubstancesSurface PropertiesMolecular ConformationGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencessymbols.namesakeMaterials TestingScattering RadiationGeneral Materials ScienceSensitivity (control systems)Particle SizeSurface plasmon resonanceComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]General Engineering021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencesColloidal goldsymbolsSurface modificationCrystallization0210 nano-technologyElectron-beam lithographyExcitationRaman scatteringACS Nano
researchProduct

Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles

2013

International audience; We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core–shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal–RE energy transfer mechanism is…

Materials scienceLuminescenceAtomic Physics (physics.atom-ph)Surface PropertiesNanoparticleFOS: Physical sciencesMetal NanoparticlesBioengineering02 engineering and technology7. Clean energy01 natural sciencesMolecular physicsFluorescenceIonPhysics - Atomic Physics010309 opticsMetal0103 physical sciencesMaterials TestingGeneral Materials ScienceElectrical and Electronic EngineeringPlasmonIonsCondensed Matter - Materials Science[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]NanotubesMechanical EngineeringDopingResonanceMaterials Science (cond-mat.mtrl-sci)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyFluorescenceSpectrometry FluorescenceEnergy TransferMechanics of MaterialsMetalsvisual_artvisual_art.visual_art_mediumParticleNanoparticlesMetals Rare Earth0210 nano-technologyOptics (physics.optics)Physics - Optics
researchProduct